Numerical scheme for a whole class of sweeping process

نویسنده

  • Juliette Venel
چکیده

2 Mathematical framework and well-posedness results 4 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Uniform prox-regularity of sets Q(t) . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Lipschitz regularity of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Well-posedness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical scheme for first order differential inclusions

The aim of this paper is to study a whole class of first order differential inclusions, which fit into the framework of perturbed sweeping process by a uniformly prox-regular set. After obtaining well-posedness results, we propose a numerical scheme based on a predictioncorrection algorithm and we prove its convergence. Finally we apply these results to a problem coming from modelling of crowd ...

متن کامل

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

متن کامل

A numerical approach for variable-order fractional unified chaotic systems with time-delay

This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...

متن کامل

Fixed-point Fast Sweeping Weno Methods for Steady State Solution of Scalar Hyperbolic Conservation Laws

Fast sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009